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Estimates of internal stresses about interstitials 
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The atomic volume of interstitial cubic and hexagonal interstitial compounds has been found 
to correlate with the size of the filled octahedron in corresponding dilute solutions. Data from 
binary systems containing N, C, and O in V, Nb, Ta, Cr, Mo, W, and Fe lattices were exam- 
ined. Systematic correlations enable estimates to be made of the components of the dipole 
tensor for interstitials in octahedral sites within selected bcc  lattices. The volume change in 
filling an interstitial site is used to determine the sum of the diagonal tensor components, 
while their ratio is obtained from the second-neighbour displacement of a lattice atom about a 
filled site. Estimates from crystallographic data are obtained using either a volume correlation 
or a common shape factor along with the second-neighbour displacement. A filled octahedron 
tends to give equal first and second-neighbour distance parameters making it nearly regular. 
Estimates are made from isotropic and anisotropic elasticity. Lattice Green function calcu- 
lations support the use of the second neighbour as a core displacement parameter. As expected, 
core displacements obtained from lattice theory can differ greatly from those obtained by 
elastic calculations except for the second-neighbour displacement. The influence of crystal 
anisotropy on the long range elastic field is examined. In niobium the first neighbour is dis- 
placed along an elastically soft direction and one finds the largest displacements of any system 
examined. 

1. I n t r o d u c t i o n  
When an interstitial atom, such as carbon, nitrogen or 
oxygen atom is introduced into a metal crystal, dis- 
placements occur in the lattice surrounding the inter- 
stitial atom. This is especially large in b c c metals, like 
group VA, VIA and VIIIA transition metals (V, Nb, 
Ta, Cr, Mo, W and Fe). The long range displacement 
field is determined from the stress dipole tensor and 
the elastic constants of the pure host metals. A knowl- 
edge of the stress dipole tensor for an interstitial alloy 
system is required for fundamental' interpretations of 
physical properties [1]. X-ray intensity data, obtained 
from ion-implanted b c c metals, such as molybdenum 
and niobium films implanted with nitrogen at liquid 
nitrogen temperature, can be greatly influenced by 
static atomic displacements about these point-like 
defects [2, 3]. Because of its fundamental import- 
ance and the difficulties encountered for making 
direct measurements with many b c c metals, we have 
examined ways of making estimates of this tensor 
using known crystallographic data and parametric 
approaches. 

Many works have been published on the measure- 
ment of the stress dipole tensor using internal friction 

[4], ultrasonic waves [5], X-ray scattering [6, 7], lattice 
swelling measurements [8, 9], and other techniques 
[10, 11]. The measured values have been summarized 
by Tewary [4] and Shirley [12], but unfortunately these 
data are available for only a few systems. 
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It has been suggested that the first and second- 
neighbour displacements can be estimated from corre- 
sponding compound information [2, 3]. This has been 
examined more completely by using all of the avail- 
able crystallographic data, for the previously men- 
tioned metals and interstitials. The stress dipole tensor 
is estimated for carbon, nitrogen or oxygen inter- 
stitials located at octahedral sites in b c c crystals of V, 
Nb, Ta, Cr, Mo, W and Fe and compared with the 
available data. 

2. Crystallography of interstitial sites 
The octahedral interstitial sites in b c c, fc c and h c p 
structures are shown in Fig. 1. This site in a b c c lattice 
is irregular, with a distance between the central point 
and the two first-neighbour atoms of a/2, and a/~/-2 
for the four second-neighbour atoms (see Fig. l a). 
Octahedral sites in f c c  structures are regular, with 
a distance between an interstitial and its six first- 
neighbour atoms of a/2 (see Fig. l b). Likewise octa- 
hedral sites in an ideal h cp  structure (with c/a = 
8x/~  ) are regular and surrounded by six atoms at a 
distance of(a2/3 + c2/16) ~ = a/x/2(see Fig. Ic). For 
a non-ideal h c p lattice with c/a # ( ~ ,  six edges of 
length a are located in (0001) planes and six extend 
diagonally between them with lengths b = (a2/3 + 
c2/4) ~ These adjustments in the non-ideal h c p  
lattice do not alter the first-neighbour coordination 
number which remains at six metal atoms separated 
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Figure 1 (a) Irregular octahedral site in a bcc lattice, (b) regular octahedral site in a fcc lattice, and (c) an octahedron in a hcp lattice 
(o metal atoms). 

by (a2/3 + c2/16) ~ The distort ion o f  the non-ideal  
oc tahedron  can be seen f rom an examinat ion o f  the 
angular  distort ion between two diagonals,  Aft, i.e. 

Aft = 2 t a n - l [ 1 / 3  + (c/2a)2] ~ - 90 ~ (1) 

At  c/a = (8/3) ~ /~ = 90 ~ For  the structures con- 
sidered, c/a varies f rom 1.58 to 1.65, causing Aft to 
vary over the range o f  - 1.25 ~ to 0.40 ~ Therefore,  the 
octahedra  in h c p lattices that  we will consider are 
regular within a small angular  distortion. One can see 
these distort ions by viewing a regular octahect ron 
along the tetragonal  axis (z), fixing a, and allowing c 
to vary above and below the ideal value. This is illus- 
trated in Fig. 2. 

When  all known c o m p o u n d s  o f  V, Nb,  Ta, Cr, Mo,  
W, Fe with C, N and O are examined, an irregular 
octahedral  site in a b c c lattice at tempts to become a 
regular oc tahedron  within its compound .  There are 
usually several compounds  for a given system and 
each gives a somewhat  different oc tahedron  size. For  
example, in the N b - N  system, N b 2 N  with h c p struc- 
ture (a = 0 .3056nm, c = 0 .4995nm) gives first- 
ne ighbour  N b - N  distance o f  0 .2162nm, while N b N  
with the NaC1 structure (a = 0.4394 nm) gives a N b -  

N distance o f  0.2197 nm. It  can be reasoned [13] that  
for either a h c p or  fc  c metal lattice one octahedral  
site corresponds to one metal atom, so that  those 
c o m p o u n d s  with chemical formula  M I  have all inter- 
stitial sites filled. The oc tahedron  volume calculated 
f rom a partially filled c o m p o u n d  (M2I) is always 
smaller than for  one that  is filled (MI) and structure 
data  do not  show a size difference for filled and 
unfilled oc tahedra  in M2I type compounds .  I f  one 
exists, it mus t  be small enough to escape detection in 
a routine structure analysis. I t  will be shown later that  
the oc tahedron  volume in the filled c o m p o u n d  differs 
f rom that  o f  a filled site in the dilute solution. 

The first-neighbour and second-neighbour  displace- 
ments, required to reshape the irregular oc tahedron  in 
the pure b c c  metal into a regular oc tahedron  in a 
NaCI  type MI  c o m p o u n d  are given by the following 
equat ions 

dl = 0.5(aMj - abcc) (2a) 

d2 = 0.5(aMl - 2x/~u~) (2b) 

For  a h c p type M I  compound ,  we obtain 

dl = (a2/3 + c2/16) ~ - abcc/2 (3a) 

d2 = (a2/3 + c2/16) ~ - a b c c / ~  (3b) 

Fur ther  investigation shows that  a one- to-one relation 
between octahedra  and host  a toms is also true for the 
b c c structure. In dilute b c c lattice, the c axis o f  the 
tetragonal distort ion is directed along (1 00), (0 1 0) 
and (001) so that  the space can be filled by irregular 
octahedra  as shown. For  a filled b c t lattice aligned in 
the same direction there is one interstitial site corre- 
sponding to one host  atom. 

It  is well known  f rom the Bain correspondence [14] 
that  a f c c  lattice may  be alternatively described as a 
b c t lattice with c/a = ,,/2. It follows that  a fictitious 
b c t  lattice can be made to extend f rom the pure 
b c c dilute solution, to a partially filled compound ,  
and finally to a filled NaC1 type compound .  In this 
sequence, the c/a ratio varies f rom 1 to , ,~  as the 
fraction o f  octahedral  sites, x, varies f rom 0 to 1 and 
all interstitials are aligned in one direction. There is a 
gap between this model  and a dilute cubic solution 
where the interaction between interstitials is negligible 
so that  their fields remain randomly  oriented along all 
three directions. A r a n d o m  configurat ion is likely for 
a system implanted at a low enough temperature so 
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Figure 2 Two distorted octahedra in the hcp lattice of Fig. lc 
viewed along the normal to the plane of four nearest neighbours. 
Note that in (a) b > a,/~ > 90 ~ and in (b) b < a,/3 < 90 ~ In each 
case, c is not perpendicular to the plane containing a and b. The 
solid central vector extends out of the plane toward the viewer. 
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Figure 3 Atomic volume plotted against fraction of occupied 
octahedra in dilute solutions, for Ta-N [19], Ta-O [20], Nb-N [19], 
Mo-C [21], V-N [22], V-O [23], Fe-N [24] and Fe-C [24]. Values of 
Xm~ ~ are given at the extreme right. 

that all transport mechanisms for foreign interstitials 
become inoperative. 

The b c t lattice parameters c and a and unit cell 
volume are given by [15]: 

c = a0(1 + u33x) (4a) 
MoC 

a = a0(1 + UllX) (4b) 

V = a~[1 + (2uu + u33)x] (4c) Mo2C 

Here x is the fraction of  the occupied octahedral sites, 
a0 the lattice parameter of the b c c host lattice and u]~ 
and u33 components of  the distortion tensor. Terms Nb2C 
beyond the first two in Equation 4c are dropped for a 
dilute solution making it linear. Equations 4a to c v2c 
represent a fictitious model when extended from the 
pure b c c lattice to full occupation of octahedral sites, wc 
It is fictitious in that it does not allow for lattice 
relaxations that accompany compound formation, w~c 

3. A t o m i c  vo lume change in a di lute 
solut ion CrN 

We define the atomic volume of an interstitial alloy by 

Volume of unit cell Fe2N 

V = Number of metal atoms in unit cell (5) 

Atomic volume clearly includes the volume of each NbN 

metal atom plus a contribution from the interstitials. 
This definition will be used later for all types of struc- 
tures in interstitial alloys. 

For  the interstitial alloys under consideration, Ta~N 
bonding is taken to be metallic making the atomic 
volume nearly independent of  the crystal structure for WN 
a given composition. This is shown in Table I which 

provides a listing of  atomic volume for interstitial 
systems having different crystal structures with the 
same chemical formula. These results suggest that 
pseudo compounds with either a h c p or fc  c structure 
can be established which is based upon the atomic 
volume of  a compound having a structure that is 
neither hexagonal nor fcc .  This behaviour is well 
known for metallic substitutional solutions and for 
our purposes conveniently defined in [18]. It has 
been stated that "Provided the nature of  the inter- 
atomic forces remains essentially metallic, the atomic 
volume so defined is independent of  the crystal struc- 
ture of the material". With sufficiently dilute solutions 
the atomic volumes of solid solutions vary linearly 
with the atomic concentration of  the solute. 

By analogy, we can consider a binary interstitial 
alloy system as a system comprised unoccupied and 
occupied octahedra within a metal lattice. The occupied 
octahedra are substituted for unoccupied octahedra 
with increasing interstitial content. The atomic volume 
of  eight dilute solutions are plotted against the inter- 
stitial content and are found to be nearly linear 
(Fig. 3). When this is extended over the full range for 
compounds of Nb-N,  one finds a considerable depar- 
ture f rom Vegards law (Fig. 4). 

For  an interstitial alloy, we have taken Vegards law 
to mean a linear relation between atomic volume and 
the fraction of  occupied octahedra. This is true 
only for the dilute solution. Here atomic volume is 
used instead of  octahedron volume. However, these 

T A B L E  I Atomic volume of interstitial compounds [16, 17] 

Chemical Crystal Atomic 
formula structure volume 

WC 20.43 
AsTi 20.42 

NaCI 19.25 
O2Pb I8.15 
Mo2C 18,58 
hp* 18.73 

hp* 20.86 
Nb2C 20.98 

Fe, N 22.30 
O_~ Pb 22.06 

WC 20.75 
NaCI 20.38 

O2Pb 18.20 
Fe 2 N 18.20 
L Cd 18.43 

NaCI 17.84 
CrN 17.67 

O** 14.68 
Ni3Ti 14.61 
hcp 14.62 

AsNi 21.11 
NaC1 21.21 
AsTi 21.36 
WC 21.06 

V,N 19.83 
Fe2N 19.78 

t** 20.64 
WC 20.48 
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Figure 4 Atomic volume plotted against fraction of  occupied octa- 
hedra compared with an extrapolation of  dilute solution data for 
the N b - N  system. 

quantities are linearly related Since the average octa- 
hedron volume calculated from the lattice parameters 
is 2/3 of the atomic volume for bcc ,  f c c  and h c p  
structures. The atomic volume corresponding to 
occupied octahedra in a dilute solution is referred to 
as an effective atomic volume, V*, which can be 
evaluated by extrapolating the linear relation of a 
dilute solution to x = 1. Atomic volume given by 
Vegards law for a dilute interstitial system (or the 
fictitious one extending the x = 1) is 

V,  = V0(l - x) + x V *  (6) 

where, V0 is atomic volume of the metal atom in the 
b c c lattice of the pure element. The ratio of V* to K~ 
as seen in Fig. 4 represents the deviation from Vegards 
law for each compound M!,-. 

Rx = V*/V~ (7) 

g~ is atomic volume calculated from the real com- 
pound using Equation 5. At x = 1, we obtain R1, 
with V1 representing the atomic volume calculated 
from MI type compounds with all octahedral sites 
occupied. Table II provides Rt for several systems 
obtained from measured 1/V 6 V/3C values and lattice 
parameters of  MI compounds. 

Since there are no MI type compounds for Fe -N 
and Fe-C systems, Vl are obtained from other related 
compounds. Atomic volumes for MzI and MI type 
compounds are calculated from 

Vos - "f~a2 c (hex) (8a) 
�9 4 

and 
17/3 

V~ = ~- (NaCI) (8b) 

The ratio of V0.5 to V~ for Nb-C,  V-C, Ta-C,  Mo -C  

and W-C is nearly a constant as is seen in Table III. 
If we take the average ratio of (V0.5/E) = 0.923 to 
approximate this ratio for the Fe-C system, we can 
estimate the atomic volume of a psuedo NaC1 type 
compound. For  FeC, one finds 

V~(Fe-C) - V~ - 0.01546nm 3 (9) 
0.923 

as well as the lattice parameter, a = 0.3954nm. 
Similar reasoning is used for estimating the atomic 
volume for other non-existent MI type compounds 
which are indicated by a parenthesis in Table IV. The 
second-neighbour displacements listed in Table V 
were calculated from the data in Table IV and 
Equations (2b and 8b). 

From the V * / E  ratio in Table II, an average value 
of 

( R , )  = 1.20 (10) 

is obtained with maximum variation of less than 7%. 
This  empirical constant is used later to estimate stress 
dipole tensors for systems without supporting lattice 
parameter data for dilute solutions. 

The fractional change in volume with x may be 
obtained by differentiating Equation 6. This can also 
be equated to the atomic fraction of the interstitial 
element C, for a dilute solution i.e. 

1 OV 1 ctV 

V ~x V OC 

since 

therefore 

C = x/(1 + x) ~ x 

l a y  v , * -  v0 
- ( 1 1 )  

v ac  Vo 

and by using Equation 10, V* ~ 1.2 V~. The latter is 
an interesting result because it allows the fractional 
volume change due to the addition ofinterstitials to be 
estimated from known atomic volumes. Experimen- 
tally, the interstitial solubilities may be so low that the 
results are unreliable. First- and second-neighbour 
displacements have been calculated from the octa- 
hedron size in NaC1 type compounds using Equations 
2a and b. 

When the shape of  the octahedron is known for the 
dilute solution, the volume is obtained from tlie 
second-neighbour displacement. First- and second: 
neighbour distances are defined by 

a 

r, = (1 + e33),r2 = m~(1 + eu) (12) 

with a / ~ ,  and a/2 for b c c. Their ratio defines the 
shape factor 

1 + •33 S - (13) 
1 + a i r  

T A B L E  II V a l u e s o f R  t a n d s  

V N N b - N  T a - N  F e - N  V-O T a - O  M o - C  Fe-C  

R t 1.155 1.166 1.163 1.280 1.180 1.144 1.282 !.277 
S 1.453 1.494 1.453 1.515 ! .479 1.43 ! - 1.560 
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T A B L E  111 Atomic volume (nm 3) estimation 

Chemical formula and crystal N b - C  V C W - C  Ta C M o - C  Fe-C  
structure 

Meal h c p  V0. 5 0.02105 0.01669 0.01830 0.02066 0.01846 0.01427 
Mel NaCI Vt 0.02233 0.01800 0.02038 0.02190 0.02043 (0.01546) 

Vos/V ~ 0.943 0.927 0.898 0.943 0.904 (0.923) 

T A B L E 1 V Atomic volume (rim)) of  MeI type structure of  17 interstitial alloy systems 

V Nb Ta Cr Mo W Fe 

MeC 0.01800 0.02233 0.02190 (0.01821) 0.02043 0.02038 (0.01546) 
MeN 0.01769 0.02121 0.02268 0.01784 0.01989 0.02048 (0.01583) 
MeO 0.01722 0.02187 0.01800 

which is equal to , ,~ for a regular octahedron. Taking 

v t -  v0 
2811 Jr- ~;33 - -  (14) 

Yv0 

and since ~11 and ~33 refer to an infinite medium, the 
Eshelby factor, Y, is introduced. This is defined later. 
Equations 13 and 14 combine to give 

v t -  v0 
- S - 1 + (2 + S)e,, (15)  

Yv0 

S has been found to vary by less than 6% about 
an average value of 1.48. This allows the volume 
change to be calculated from the second-neighbour 
displacement. 

4. D i p o l e  stress t e n s o r  and e las t ic  
d i s p l a c e m e n t  f i e lds  

The experimental change in fractional volume and the 
second-neighbour displacement can be used to esti- 
mate the dipole stress tensor. The simplest calculation 
makes use of an isotropic elasticity calculation; how- 
ever, it is also the most approximate except for 
tungsten. A second approach using the same input 
parameters makes use of the elastic Green function 
and has the advantage of treating elastic anisotropy. 
For isotropic tungsten, both approaches are in agree- 
ment as expected. 

The elastic displacement field about an interstitial 
atom is an octahedral interstitial site within an infinite 

T A B L E  Va The first-neighbour displacement, d~ (rim) and per 
systems. Obtained from structure data 

isotropic crystal has been given by Keating and 
Goland [28], i.e. 

D cos 2 0 "~ 
US = ir 7 +  r 2 // 

where 

F . 
+ i 0 T s l n  0 c o s  0 

F- 

(16) 

+ + 3, c d D = + Cs;  E - 2---7--  

F =  - C a  

g ( C l j  Jr- 4C12 - 2C44) 

# = �89 - -  C,2 4- 3C44 ) 

where C~ and Ca are the strengths of the spherical and 
doublet displacement fields, i r and i o are unit vectors in 
a spherical polar coordinate system centred on the 
doublet force, r is the distance from the centre and 0 
is the angle between r and the axis of the doublet force 
aligned along any one of the equivalent directions. 2 
and # are the Lame elastic constants. The bulk strain 
produced by a uniform distribution of interstitials in 
the z type of octahedral site, with the axis of the 
doublet force along the [001] direction, is given by 

4=(x) ( )_LC) 
Ull ~ - - "  T ~ x ~  j Y C ~ -  2# dJ (17a) 

 ,Tb, 1233 = T k  ~70, ] Cs -{- # 

cent strain (%) relative to original distance for 17 interstitial alloy 

V Nb Ta Cr Mo W Fe 

C d 0.057 0.058 0.058 (0.065) 0.060 0,059 (0,054) 
% 37.4 35.2 34.9 45.1 37.9 37.0 37.9 

N d 0.055 0.054 0.060 0.063 0.058 0.059 (0.056) 
% 36.6 32.9 36.5 44.1 36.7 372 39..1 

O d 0.054 0.057 0.064 
% 35.4 34,9 44.5 

T A B  LE Vb  The second-neighbour displacement, d 2 (rim) and per cent strain (%) relative to original distance for 17 interstitial alloy 
systems. Obtained from structure data 

V Nb Ta Cr Mo W Fe 

C d - 0.006 - 0.010 - 0.011 ( + 0.005) - 0.006 - 0.007 ( - 0.009) 
% - 2 . 8  4.3 - 4 . 7  2.5 - 2 . 7  - 3 . 1  - 4 . 4  

N d - 0.007 0.014 -- 0.008 + 0,004 - 0.007 - 0.007 ( -  0.005) 
% - 3 . 3  - 6 . 0  - 3 . 4  2.0 - 3 . 1  - 3 . 1  - 2 . 5  

O d - 0.009 - 0.011 + 0.004 
% - 4 . 2  - 4 . 7  2.0 
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where x is the fraction of z type sites occupied and 
Y = 3(2 + 2/*)/(32 + 2/*)factor first introduced by 
Eshelby [29] to meet the boundary conditions on the 
free surface of the crystal. If the crystal has cubic 
symmetry, all three types of equivalent sites are filled 
with equal probability and 

1 c~V 4re 
-- - -  Y(3Cs + Ca) (18) 

v ~c 3Vo 

where C is the atomic fraction of the impurity atoms. 
Similarly from Equation 18 the sum of components of 
the elastic dipole stress tensor for an octahedral defect 
oriented along the z direction becomes [30] 

2 ~V 
2 P ,  l -1- P33 = (32 -[- /*)?--d (19) 

One can show that the sum of the components of the 
dipole stress tensor is give by 

4roY 
2P,~ + P33 = (32 -]- 2/*) T (3Cs + Ca) (20) 

The fractional change in volume with atomic frac- 
tion, as given in Equations 18 and 19, provide a link 
with lattice parameter data as was shown in the 
previous discussions. However, a second experimental 
parameter is required in order to evaluate the strength 
parameters and both components of the dipole tensor. 
Table V shows that the first-neighbour displacement 
from compound data is normally large while the 
second-neighbour displacement is small for a core 
displacement and is typically less than 5% of the 
second-neighbour distance. This has been selected as 
the second experimental parameter to be fitted to the 
linear elastic equations. Proceeding on this basis using 
Equation 16, we obtain 

l (  2 +  /*Cd) d2 = ~ 2Cs (21) 
/* 

From Equations 16 and 18, one can solve for the 
separate strengths in terms of the volume change and 
the second-neighbour displacement i.e. 

G = 

Ca = 

Y~+su G-f ~Yd 

( / * ) d ~ a  2 (22a) 
+ 32 + 5/* - 

+ 5/*) 3V 

( 3 2 3 / * )  d ~ a 2 +  5/* - (22b) 

or, in terms of the dipole stress tensor 

P33 - Pll 
Ca - (23a) 

4rc(2 + 2#) 

P~ 
C~ - (23b) 

4rc(2 + 2/*) 

Solving for the components of the dipole stress 
tensor, gives the simplest estimate based upon isotropic 
elasticity theory 

( 2 + _ 2 / * ' ]  
PII - -  P22 = 4~ 32 + 5/*] 

(2 + /*) 4~Y V #C + /*d2a2 (24a) 

P33 = 4~ ~ 

( 3 V l ~ V V  2/*d2 a2) (24b) 
(2 + 3/*) 4roy V #C 

The dipole stress tensor can also be estimated from 
the displacement field around an interstitial by an 
anisotropic elasticity theory. Beyond the core region, 
the displacements are given by [29] 

/,/i (r)  el = Gi j . k ( r )e j k  (25a) 

where ui(r) (i = l, 2, 3) are the cartesian component 
of displacement at vector position r with respect to the 
interstitial, G!~l.k is the elastic Green function of the 
ideal lattice with a derivative taken in the k direction. 
The dipole stress tensor is estimated by making the 
volume change and the second-neighbour displace- 
ment agree with the crystallographic values. This fit- 
ting procedure was carried out at 10nm along the 
[I 10] direction using Equation 21 which is assumed to 
be an elastic displacement. The isotropic displacement 
serves as a starting estimate for the anisotropic 
approach i.e. Equation 25a. These components Pll, 
P33 along with some experimentally measured values 
are listed in Tables VI, VII and VIII for V, Nb, Ta, Cr, 
Mo, W and Fe with solutes C, N and O. 

5. C a l c u l a t e d  d i s p l a c e m e n t  f i e l d s  
The long range atomic displacement field is calculated 
from Equation 25a. For the core displacements this 
elastic approach is modified to include anharmonicity 
in the host lattice. This modification is given by 

~' = ~G~' "f/~ (25b) 
/d? 

T A B L E  VI Components P l l ,  P22 and P33 of stress tensor in (eV) for systems containing V-N,  Nb-N,  Ta-N,  Fe-N, V-O, Nb-O 
and Ta-O. Estimates are based upon experimental volume changes and crystallographic second neighbour distances 

Method Elastic V-N Nb-N Ta-N Fe-N Fe-C V-O Ta-O 
theory 

Crystal structure lsotropic PH 4.53 4.64 6.68 6.04 4.76 4.15 4.74 
data Theory P33 l 0.14 12.31 17.25 15.44 16.33 10.43 16.35 

Anisotropic Pn 4.28 3.70 7.37 6.98 6.07 3.86 5.56 
Theory P~3 10.64 14.19 15.86 13.56 13.71 11.00 14.71 

Measured values (Pit) 4.13 4.39 7.10 7.03 6.37 3.82 6.58 
P33 10.94 12.81 16.40 13.46 13.11 11.08 12.66 

2Pit + P33 19.20 21.59 30.60 27.52 25.85 18.72 25.82 
Reference [12] [25] [12] [26] [27] [7] [25] 

2 6 7 2  



T A B L E  VII Estimated stress tensor in (eV) for systems containing V-N, Nb-N, Ta-N, Fe-N, V-O, and Ta-O. Estimates are based 
upon crystallographic second-neighbour distances and shape factor ( S )  = 1.484 or atomic volume ratio (R~) = 1.2 

Method Elastic V-N Nb-N Ta-N Fe-N Fe-C V-O Ta-O 
theory 

Average atomic volume Isotropic PH 5.12 5.38 7.50 5.32 4.60 4.43 5.97 
ratio (RI)  = 1.20 Theory P33 11.11 I3.30 18.72 12.75 12.72 10.85 18.31 

Anisotropic Pt~ 4.81 4.42 8.22 6.04 5.45 4.08 6.80 
Theory P33 11.73 15.23 17.30 11.32 11.03 11.55 16.65 

2PH + P33 21.35 24..07 33.74 23.40 21.93 19.71 30.25 
Average shape factor Isotropic Pt~ 4.95 4.48 7.74 6.35 5.55 4.24 6.11 
( S )  = 1.48 theory P33 10.84 12.02 19.11 14.67 14.49 10.55 18.53 

Anisotropic PLI 4.65 3.56 8.47 7.12 6.45 3.90 6.95 
theory P33 11.44 13.85 17.66 I3.I2 12.69 11.23 16.85 

2PII + P33 20.74 20.97 34.60 27.36 25.59 19.03 30.75 

where u7 (i = 1, 2, 3) are the cartesian components of 
displacements of the rn th lattice atom, G~-"s the Green 
function matrix of the ideal lattice and f f  are the 
cartesian components of the Kanzaki forces acting on 
the n th lattice atom. The Kanzaki forces are not only 
due to the defect-lattice interaction but they also 
model any anharmonicity in the host lattice displace- 
ment field. For points far away from the defect, 
Equation 25b must converge to the harmonic elastic 
solution Equation 25a. 

The Kanzaki forces are related to the dipole stress 
tensor by 

r,"f/ = P,y (25c) 
n 

where r7 are the cartesian components of the vector 
joining the interstitial site with the r/th lattice atom. If 
radial Kanzaki forces are assumed to act only on the 
first three neighbouring shells around the interstitial 
defect, then 

4 f  (3) a 
P~, = fO)a + - ~ -  

and 
8.]~ (3) a 

P22 = x/2 f <2, a + ---~-- 

It has been shown that for b c c niobium and tantalum, 
forces must be applied to the first three neighbours in 
order to be in reasonable agreement with the data [31]. 
All three are evaluated by using the two components 
of the stress tensor and the second-neighbour distance 
given by the compound. Core displacements are calcu- 
lated using the lattice Green function and the Kanzaki 
forces given in Table IX. The elastic displacement field 

far away from the defect remains the same for both the 
models, since they are determined by the same dipole 
tensor and the elastic constants of the bcc crystal 
(Equation 2). 

Tables Xa and Xb give displacement fields using 
anisotropic Green function calculations (Equations 
25a and 25b). These may be compared with the iso- 
tropic calculations of Keating and Goland as given in 
Equation 25c. We have carried out both calculations 
for eight systems using common dipole tensors and 
second-neighbour distances. 

An examination of atomic displacements about 
interstitials in a dilute solution, using the lattice Green 
function, indicates that major positive displacements 
are found along the tetragonal axis and minor nega- 
tive displacements occur in perpendicular directions. 
Also, no sharp transition is found between lattice or 
atomistic calculations and those based upon a purely 
elastic calculation. 

The literature shows that when different calcu- 
lations are compared [28] large differences in the core 
displacements are found. These differences between 
various calculations are at a minimum at the second 
and more distant neighbours along equivalent [110] 
directions. An examination of Table X shows that 
lattice calculations give a smaller first-neighbour dis- 
placement than elastic calculations. The latter are 
extrapolations of a linear theory into a region of large 
displacements where departures are expected. With 
the exception of the first-neighbour displacement, all 
strains should be small enough to be in accord with a 
linear theory. Oscillations in the lattice displacements 
account for the major departures with those obtained 

T A B L E  VIII  Estimated stress tensor in (eV) for systems containing V-C, Nb-C, Ta-C, Cr-C, Cr-N, Cr-O, Mo-C, Mo-N, W-C 
and W-N. Estimates are based upon crystallographic second-neighbour distances and shape factor ( S )  = 1.484 or atomic volume ratio 
(R~) = 1.2. No experimental dipole tensor 

Method Elastic V-C Nb-C Ta-C Cr-C Cr-N Cr-O Mo-C Mo-N W-C W-N 
theory 

"Average atomic volume Isotropic PH 5.56 7.11 6.02 8.22 7.51 7.81 9.84 8.28 9.64 9.99 
ratio (R~) = 1.20 Theory P33 11 .30  1 4 . 2 3  1 8 . 3 4  11 .85  12 .03  11 .97  2 5 . 2 1  25.04 30.79 30.82 

Anisotropic PII 5.32 6.32 6.87 8.20 7.37 7.75 8.75 7.05 9.64 9.99 
Theory P33 11 .78  1 5 . 8 2  1 6 . 6 4  11 .89  12 .31  1 2 . 1 7  27.39 27.50 30.79 30.82 

2PH + P33 2 2 . 4 2  28.46 3 0 . 3 8  28.29 2 7 . 0 5  27.59 44.89 41.60 50.08 50.80 
Average shape factor lsotropic Pn 5.41 6.19 6.17 10 .83  1 0 . 0 4  1 0 . 3 8  11.27 9.56 11.81 12.19 
(S )  = 1.48 theory P33 11 .03  1 2 . 9 2  1 8 . 5 6  1 7 . 6 0  1 7 . 5 4  1 7 . 5 7  27.80 27.36 34.78 34.87 

Anisotropic PH 5.17 5.35 6.98 10.61 9.71 1 0 . 0 9  10.14 8.26 11.81 12.19 
theory P33 ll.51 1 4 . 6 0  1 6 . 9 3  18 .05  18 .21  18.t5 3 0 . 0 6  29.96 34.78 34.87 

2Pu + P33 2 1 . 8 5  25.30 3 0 . 8 9  3 9 . 2 7  37 .63  3 8 . 3 3  50.34 46.48 58.40 59.24 
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Figure 5 Locus  of  elast ic d i sp lacements  of  cons tan t  m a g n i t u d e  for three sys tems (a) W - N ,  (u 0 = 0.802 x 10 5 nm, x = 0.01), (b) M o - N  

(u 0 = 0.810 x 10 -5 nm, ~ = - 0 . 4 4 )  and  (c) T a - N  (u0 = 0.838 x 10 5nm, x = 0.68) wi th  very different lat t ice an i so t ropy  showing  

i so t ropic  (--  --)  and  an i so t rop ic  so lu t ions  ( - - ,  - - -) .  Vector  d i rec t ions  in (100) ( ) and  (110) ( -  - - )  p lanes  a long  the same rad ia l  angle  
are essent ia l ly  the same. 

from purely elastic calculations. The calculations 
given in Table X represent fields from single inter- 
stitial defects while the dilute solution data presented 
in Fig. 3 extend to ~ 8 at %. Clearly there is consider- 
able overlap of displacement fields in regions extend- 
ing beyond the first and second neighbours. Averaging 
these interacting fields should tend to smooth out the 
oscillations. 

The octahedron model introduces correlation 
between first and second neighbours that leads tO the 
correct change in volume when expressed in terms of 
the second-neighbour displacement. The latter is small 
and most consistent with respect to lattice and elastic 
calculations. The first-neighbour displacements calcu- 
lated from the octahedron model need not agree with 
the actual lattice values but rather are parameters that 
give the components of the dipole stress tensor within 

20% of the experimental values. One finds that 
these first-neighbour parameters tend to be inter- 
mediate relative to those obtained from both lattice 
and anisotropic elastic calculations. 

In applying anisotropic approaches, the following 
parameter plays an important role 

o~ = C44 - 0.5(C11 - C12) (26) 

These are listed for seven host metals in Table XI. 
They provide useful data for discussing the elastic 
displacement fields in anisotropic lattices. Figs 5a, b 
and c show polar plots of the locus of displacements 
of constant magnitude around an interstitial defect. 
An intermediate and two extreme systems are illus- 
trated in terms of their elastic anisotropy, ~. The 

tetragonal axis is denoted by C and the direction of the 
displacements are indicated at 10 ~ intervals. Fig. 5b 
shows a plot at radial distances for the Mo-N system, 
with a constant displacement ofu 0 = 0.81 x 10 .5 rim. 
The anisotropic solution gives an equidisplacement 
point farther from the defect than does the isotropic 
solution along the C axis when c~ is negative. Fig. 5c 
shows a similar plot for the Fe-C system in which the 
anisotropic solution gives an equi-displacement point 
along C axis closer to the defect because of the positive 
~. Fig. 5a is an intermediate plot for the W-N system. 
In this case, the three curves are essentially identical 
because tungsten may be considered to be isotropic 
(~ = 0 . 0 1 ) .  

Fig. 6 is the polar plot of the Nb-N system in which 
the anisotropic solution gives significantly larger dis- 
placements relative to any of the systems examined. 
This becomes obvious from the large value of u0 at 
larger distances along C and in perpendicular direc- 
tions (Fig. 6). In niobium, the [00 1] direction is elas- 
tically soft, causing large positive displacements while 
the perpendicular direction responds with a large 
Poisson contraction. 

6. D iscussion 
An examination of crystallographic data has shown 
that the atomic volume of interstitial compounds 
combining N, C, and O with V, Nb, Ta, Cr, Mo and 
W having different crystal structures with the same 
chemical formula is nearly a constant. One also finds 
that the ratio of atomic volume of hcp  (M2I) com- 
pounds to cubic NaC1 type structures (MI) is ~ 0.923. 

T A B L E I X Kanzak i  forces, f %  ./(2) and  f(3), in (eV A L) ac t ing  on the first three ne ighbour ing  shells a round  an inters t i t ia l  a tom 

V - N  N b - N  T a - N  F e - N  F e - C  V - O  T a - O  

f i l l  2.694 2.952 4.078 3.463 3.214 2.720 2.566 

.fl2) -- 0.319 -- 0.375 0.245 -- 0.009 - 0.350 -- 0.421 -- 0.399 
f i l l  0.506 0.520 0.507 0.689 0.759 0.518 0.717 
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Figure 6 Locus of elastic displacements of constant magnitude for 
N b - N  system. Symbols as for Fig. 5. u 0 = 0.843 x 10-Snm 
7 = 0.24. 

Treating this as a constant has allowed us to develop 
a pseudo structure of the NaC1 type even though this 
structure is not always observed. A correlation factor 
between this volume and the effective volume due to a 
filled octahedron in a dilute solution data has been 
found. Therefore, one can determine the atomic vol- 
ume from a M21 compound, then calculate the atomic 
volume of the MI compound, and then estimate d2 and 
V*. Alternatively, the required volume change in the 
dilute interstitial solution is obtained from the shape 
factor S and the second-neighbour strain ell. This 
correlation of parameters allows estimates to be made 
of the dipole tensor in two ways. 

The core region is conveniently defined as the six 
neighbours of an interstitial which tend to be at nearly 
equal distances in the form of a regular octahedron. 
The second-neighbour distance about an interstitial 
undergoes only a small negative displacement and can 
be estimated from known crystallographic data. 

Plots of the elastic displacement field, obtained 
from anisotropic elasticity theory show that there is a 
major positive disturbance along the tetragonal axis 
and a minor disturbance in the perpendicular direc- 
tions. When the anisotropy factor is large and posi- 
tive, the disturbance along the C axis is reduced 
(Fe-C) while when it becomes negative (Nb-N) it is 
expanded relative to the isotropic calculation. For 
anisotropic materials, differences are found for atoms 
located in (001) and (011) planes. That is, the dis- 
placement field is not symmetrical about the te- 
tragonal axis but only within planes of fixed orienta- 
tion. 

Although, V-O fits the same overall pattern as the 
nitrides, Ta-O appears to be out of the expected error 

T A B L E  XI Anisotropic factor, c~ 

V Nb Ta Cr Mo W Fe 

-0 .12  0.24 0 .31  --0.42 --0.44 0.01 0.68 

band. It is known that oxygen can show a tendency for 
ionic bonding and a higher degree of electron exchange 
with metal orbitals. Consequently, the estimates 
developed in this paper become questionable with 
interstitial systems containing oxygen and probably 
should be limited only to those containing nitrogen 
and carbon. 
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